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Abstract. The crossover behaviour in ad-dimensional percolating superconductor (S)–nonlinear-
normal-conductor (N) random network is studied. The system is composed of a volume fraction
f of superconductors, and fraction 1− f of nonlinear normal conductors with the current (i)–
voltage (v) relation of the formi = g1v + χ1v

β+1, whereg1 andχ1 are the linear and nonlinear
response of normal conductors. As the percolating thresholdfc of the superconductor is approached
from below, the crossover electric field| EEL–NL| and corresponding current density| EJL–NL|,
defined as the field and current density at which the linear and nonlinear response of the random
network become comparable, are found to have power-law dependence| EEL–NL| ∼ (fc − f )M(β),
| EJL–NL| ∼ (fc−f )N(β) respectively. Within the effective medium approximation (EMA), critical
exponentsM(β) andN(β) are estimated to be12 and− 1

2 for all spatial dimensionsd and arbitrary
nonlinearityβ. By means of the multifractal approach, explicit expressions forM(β) andN(β)
as a function ofβ are obtained. Ford = 2, we investigate the influence of nonlinearityβ on
the crossover properties analytically and numerically; while ford = 3, we present such special
values asM(2) ≈ 0.74 andN(2) ≈ −0.01; M(4) ≈ 0.79 andN(4) ≈ 0.04; N(∞) ≈ 0.88
andN(∞) ≈ 0.13. Careful examination of exponentsM(β) andN(β) gives interesting crossover
behaviour. Numerical results are also compared with previous bounds and good agreement is found.

1. Introduction

Nonlinear inhomogeneous composite materials have attracted much interest in recent years
[1–3]. Typically, such a system consists of a material with weakly nonlinear current (i)–voltage
(v) characteristics of the formi = gv + χv3, embedded in a linear or nonlinear host. Two
basic questions concerning such random systems are often raised: one is the calculation of
the effective nonlinear response [4–7]; the other is critical properties and scaling behaviour of
linear and nonlinear properties near the percolation threshold [4, 8–10].

For the second question, the percolation theory [11] has been extremely useful in describing
linear properties in a superconductor–normal-conductor random network (S/N limit) and a
normal-conductor–insulator system (N/I limit) near the percolation threshold. According
to the theory of percolation, one can define the critical exponents (or t) to describe the
divergence of the linear conductivity (or resistivity). Such divergence is geometrical in
nature and is related to the fractal character of the incipient infinite cluster. As to nonlinear
properties, Stroud and Hui [4] demonstrated the relation between the nonlinear–random-
network problem and the noise problem in the corresponding linear system, and obtained the

† Correspondence address.

0953-8984/99/448727+12$30.00 © 1999 IOP Publishing Ltd 8727



8728 L Gao and Z-Y Li

critical exponent of the effective third-order susceptibility in a nonlinear normal-conductor–
insulator (N/I) composite; Blumenfeld and Bergman [12] pointed out that the results in [4] can
be used to derive a characteristic value of the current (crossover current) at which the linear
and nonlinear response in N/I mixtures become comparable. For superconductor–nonlinear-
normal-conductor (S/N) mixtures below the percolation threshold of the superconductor, Hui
defined the crossover current density| EJL–NL| to characterize the crossover effect from linearity
to nonlinearity within the ‘nodes–links–blobs’ (NLB) picture [13]; later, he also studied the
analogous problem and derived a value of the crossover electric field| EEL–NL| which marks
the transition from linear to nonlinear behaviour [14]. Critical exponents of these nonlinear
physical parameters are evaluated by means of various methods including the effective medium
approximation (EMA) [8, 10, 14], numerical simulation [9, 10] and the relation to the noise
exponents [10, 14]. All these considerations lead to the same conclusion, that, due to geometric
effects near the percolation threshold, the linear regime in thei–v response shrinks. In other
words, the nonlinear response becomes increasingly important as the percolation threshold is
approached. Such a percolating S/N system will be of potential practical use, because it has a
high conductivity and yet is highly nonlinear [13].

To our knowledge, much work concentrates on the critical behaviour of effective cubic
nonlinearity, i.e.,β = 2. In fact,β is not limited to 2 generally. For the material without
inversion symmetry, the lowest-order nonlinearity isβ = 1. For example, thei–v characteristic
of a carbon–wax mixture is found to be nonlinear and the leading nonlinear term is quadratic
(orβ = 1) [15]; numerical simulation of the effective high-order nonlinearity withβ = 2, 3, 4,
6 of a random network has also been investigated [16, 17]; Fu and Resca [18] have considered
a non-integerβ = 2.5 to discuss the effective response; higher nonlinearity may be found in
some ceramic two-dimensional materials at low temperature [19], as in a recent experiment
on laser-irradiated polymers [20] and condensed matter to which a sufficiently strong field is
applied [12]; theoretical studies on the effective nonlinear response with arbitrary nonlinearity
have been proposed [16, 17] also. The purpose of this paper is twofold: we firstly generalize
the previous studies on the critical behaviour of effective nonlinear properties [9, 10, 14], which
is only applicable to cubic nonlinearity, to the case of arbitrary nonlinearity, i.e., the normal
conductor has the weak nonlinear form:i = gv+χ1v

β+1, β > 0. Secondly, both the crossover
field | EEL–NL| and corresponding current density| EJL–NL| are examined at the same time.
Previous work has often concentrated on| EEL–NL| in a percolating S/N system with third-
order nonlinearity. The effect of nonlinearityβ on these crossover physical parameters in the
percolating S/N random network is examined systematically. Below the percolation threshold
fc of the superconductor, the magnitudes of crossover field| EEL–NL|and current density| EJL–NL|
are found to have power-law dependence| EEL–NL| ∼ (fc − f )M(β), | EJL–NL| ∼ (fc − f )N(β)
respectively.M(β) andN(β) are critical exponents of these crossover physical parameters
and are dependent onβ in general. A crude estimate can be obtained by using EMA [16],
which givesM(β) = 1

2 andN(β) = − 1
2 for all spatial dimensionsd and arbitrary nonlinear

exponentβ. With the multifractal approach [21], the dependence of explicit expressions of
M(β) andN(β) on the nonlinearityβ is obtained. A detailed investigation ofM(β) and
N(β) as a function ofβ is made for a two-dimensional percolating S/N system, and numerical
results ford = 3 are presented for some special nonlinear orders. Theoretical predictions are
compared with previous work also [10, 13, 14].

2. Estimate of exponentsM (β) andN (β)

We consider ad-dimensional superconductor–nonlinear-normal-conductor hypercubic random
network with the volume fractionf of superconductors and with 1− f of weakly nonlinear
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normal conductors. Normal conductors have a current–voltage response of the formi =
g1v + χ1v

β+1, whereg1 andχ1 are the linear conductance and the nonlinear response, while
superconductors haveg2 = ∞. Previous studies assumed third-order nonlinearity, namely
β = 2. Such cubic nonlinearity is the lowest-order nonlinearity appearing in a material
with inversion symmetry [4–8]. Throughout this work, the nonlinear term is assumed to be
weak, i.e.,χ1v

β/g1 � 1. We concentrate on the regime wheref < fc. For f > fc, the
superconductor forms a connected path across the system and the whole system becomes
perfectly conducting. Below the percolation threshold of the superconductorf < fc, the
effective nonlinear response of the whole system can be represented by

I = GeV0 +AeV
β+1
0 (1)

whereGe andAe are the effective bulk linear conductance and nonlinear response respectively
[22], andI is the current across the whole network when the external voltageV0 is applied to
the system. Equivalently, each bond is replaced by a conductor with the form

i = gev + χev
β+1. (2)

Note thatge ∝ Ge andχe ∝ Ae, whileGe andAe are given by

Ge = g1

∑
c

(
Vc

V0

)2

(3)

and

Ae = χ1

∑
c

(
Vc

V0

)(β+2)

. (4)

Here the summation is performed over all the normal conductors as no voltage drop is across
the superconductor phase;Vc is the voltage drop in the normal conductor in the corresponding
linear random system (obtained by solving the same inhomogeneous problem withχ1 = 0),
when the external voltageV0 is imposed on the network. Equation (4) gives an expression for
Ae to the first order in the nonlinear responseχ1.

The crossover voltageVL–NL is defined as the voltage at which the linear and the nonlinear
response become comparable and can be obtained by equating the two terms on the right-hand
side of equation (1); we have

VL–NL =
(
Ge

Ae

)1/β

. (5)

The corresponding crossover current then can be obtained by using the value ofVL–NL in
equation (1) and is given by

IL–NL = 2GeVL–NL = 2Ge

(
Ge

Ae

)1/β

. (6)

We note that, in order to determine critical exponents, it is wise to use notVL–NL and
IL–NL, but rather the more universal quantities which are independent of the size of the network
L, in the thermodynamic limitL → ∞. Therefore, we are interested in crossover physical
parameters such as the crossover electric field| EEL–NL| and the crossover current density
| EJL–NL|, which are defined as

| EEL–NL| = VL–NL/L =
(
Ge

Ae

)1/β

/L ∝
(
ge

χe

)1/β

(7)

| EJL–NL| = IL–NL/L
d−1 ∝ ge

(
ge

χe

)1/β

. (8)
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Below the percolation threshold of the superconductorfc, crossover physical parameters
| EEL–NL| and| EJL–NL| are found to behave as

| EEL–NL| ∼ (fc − f )M(β) (9)

and

| EJL–NL| ∼ (fc − f )N(β) (10)

respectively, whereM(β) andN(β) are critical exponents of crossover physical parameters.
In the following subsection, we shall show how to obtain these critical exponents and analyse
the critical behaviour of| EEL–NL| and| EJL–NL| nearfc.

2.1. An effective medium approximation (EMA)

An EMA [5, 8] has been proposed for estimating the effective nonlinear response in a third-
order nonlinear random mixture. Later, it is also generalized to calculate the effective nonlinear
response for the(β + 1)th-order nonlinear mixture [16]. Here we give a brief review.

For the system we studied, the effective arbitrary order nonlinear responseχe can be
written as [16]

χe = (1− f )χ1〈V β+2
c 〉

V
β+2
0

(11)

where〈· · ·〉 denotes the spatial average. By means of a decoupling scheme [6, 16],〈V β+2
c 〉 can

be written approximately as

〈V β+2
c 〉 ≈ 〈V 2

c 〉
β+2

2 . (12)

As mentioned in [16], the approximation is based on the assumption that the fluctuations
in the voltage〈V β+2

c 〉 − 〈V 2
c 〉

β+2
2 within the normal conductor are small compared to〈V β+2

c 〉
itself. This approximation will be accurate in geometries for which the voltage drop is nearly
uniform within the nonlinear normal conductors and less accurate when these fluctuations are
large as in a random mixture near the percolation threshold.

It is known that〈V 2
c 〉 can be expressed as [4]

〈V 2
c 〉 =

1

1− f
∂ge

∂g1
V 2

0 . (13)

Substituting equations (12) and (13) into equation (11), we can arrive at a compact formula
for the effective nonlinear responseχe

χe = χ1

(1− f )β/2
(
∂ge

∂g1

)β+2
2

. (14)

The EMA is completed by calculatingge from some linear approximations such as the
Maxwell–Garnett formula and linear EMA. The linear EMA is a self-consistent scheme which
is valid for the whole fraction regime and reads∑

i

fi
gi − ge

gi + (d − 1)ge
= 0 (15)

whered is the dimension of the system whilefi is the fraction of theith component. For the
S/N limit, the effective linear and(β + 1)th nonlinear response can be obtained as follows:

ge = g1

d

(
1

d
− f

)−1

(16)

χe = χ1

d
β+2

2

1

(1− f ) β2

(
1

d
− f

)− β+2
2

. (17)
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Then, the crossover field| EEL–NL| and the corresponding current density| EJL–NL| are

| EEL–NL| ∝
(
ge

χe

)1
β

∼ (fc − f ) 1
2 (18)

| EJL–NL| ∝ ge
(
ge

χe

)1
β

∼ (fc − f )− 1
2 . (19)

Thus within the EMA,fc = 1/d, and crossover exponentsM(β) = 1
2 andN(β) = − 1

2 for
all spatial dimensionsd and arbitrary nonlinearityβ, i.e., these crossover parameters behave
the same way independent of the detail of the nonlinear behaviour of individual components.
Results also show that in a percolating S/N system, the crossover field vanishes while the
crossover current diverges. This requires that we should not introduce the crossover current
density but the crossover electric field to characterize the crossover behaviour, because the
former| EJL–NL| → +∞ asf → f −e , which cannot be easily accessed in experiments.

EMA may give the correct behaviour near the percolation threshold qualitatively but
usually predicts the incorrect exponents, because it does not take into account the full
complexity of the spatial fluctuations of the voltage to which the effective nonlinear properties
are so sensitive.

2.2. A multifractal approach

In order to describe multifractal properties of a S/N random network, one often defines the
multifractal moment of the voltage distributions for normal-conductor bonds [21]

Tp =
∑
c

(
Vc

V0

)2p

. (20)

It turns out that various moments ofTp have different physical interpretations for differentp.
For instance, the zero moment(p = 0) describes the fractal dimensionality of the backbone,
the second moment(p = 1) is proportional to the bulk conductanceGe and the fourth(p = 2)
is closely related to the 1/f noise exponent while the infinite moment is governed by the
so-called single disconnected bonds.

Forf < fc and in the thermodynamic limit(L→∞), Tp depends not only onL but also
on (fc − f ) and scales as a power law [21]

Tp ∼ Ld−2p(fc − f )[s(2p)−2ps(2)] . (21)

Heres(2) is nothing but the critical exponent of the effective linear conductivity in the S/N
system. According to the definition ofGe andAe, we have

Ge ∼ Ld−2(fc − f )−s(2) (22)

Ae ∼ Ld−(β+2)(fc − f )[s(β+2)−(β+2)s(2)] . (23)

Thus, crossover physical parameters behave as

| EEL–NL| =
(
Ge

Ae

)1/β/
L ∼ (fc − f )

(β+1)s(2)−s(β+2)
β (24)

and

| EJL–NL| = 2Ge| EEL–NL|/Ld−2 ∼ (fc − f )
s(2)−s(β+2)

β . (25)

Here we emphasize that the above relations are correct forL > ξ (ξ is the correlation length
andξ ∼ (fc − f )−ν near the percolation threshold), i.e., in the Euclidean regime, and thus
hold in the thermodynamic limit(L→∞) andf < fc. Therefore, critical exponentsM(β)
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andN(β), which describe the dependence of the crossover electric field and current density
onfc − f in the S/N limit, are given explicitly as follows:

M(β) = (β + 1)s(2)− s(β + 2)

β
(26)

and

N(β) = s(2)− s(β + 2)

β
. (27)

In order to investigate critical properties ofM(β) andN(β), we must look for the
expressions fors(β + 2).

For a finite system of sizeL right atf = fc, the correlation length diverges and the whole
system is in the fractal and self-similar region. In this case,Tp will only depend onL because
the correlation lengthξ is limited by the finite sizeL andξ ≈ L. Then the dependence ofTp
andL can be obtained by putting(fc − f ) ∼ ξ−1/ν = L−1/ν , that is

Tp ∼ L
(d−2p)ν−s(2p)+2ps(2)

ν . (28)

On the other hand, atf = fc, the voltage momentTp can also scale as [23]

Tp ∼ L
ζ(2p)
ν (29)

whereζ(2p) is the moment exponent. Comparing with the above two equations, we can obtain
the relation betweens(2p) andζ(2p)

s(2p)− 2ps(2) = (d − 2p)ν − ζ(2p). (30)

Letting 2p = β + 2 and substituting equation (30) into equations (26) and (27), we can easily
obtain

M(β) = ν +
ζ(β + 2)− ζ(2)

β
(31)

and

N(β) = (d − 1)ν +
ζ(β + 2)− (β + 1)ζ(2)

β
. (32)

So far, these expressions represent an exact scaling law. Here, we have formulated these
crossover exponents as a function ofβ based on the multifractal approach. Critical exponents
of the crossover electric field and the corresponding current density can readily be analysed
and calculated by use of equations (31) and (32).

2.3. Numerical discussions

Crossover exponentsM(β) andN(β) in a percolating S/N system become very important
when one wants to know how nonlinear properties are dependent onβ.

First, we analyse the properties of exponentsM(β) andN(β) in the two-dimensional case.
In this case, from the duality consideration, it has been shown [23] thatζ(β + 2) is consistent
with the moment exponent in a two-dimensional percolating N/I network and has the form

ζ(β + 2) = (β + 2)p(2)− p(β + 2) (33)

with p(β + 2) ≡ β + 1 + {(β + 2) ln(5/4)− ln[1 + 2−(β+2)]}/ ln 2 [23].
According to equations (31)–(33), we obtain the first limit case thatβ → 0+

lim
β→0+

M(β) = ν − lim
β→0+

2−(β+2)

1 + 2−(β+2)
≈ 1.13 (34)
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and

lim
β→0+

N(β) = (d − 2)ν − ζ(2) + lim
β→0+

M(β) = −0.19. (35)

Crossover exponents forβ = 2, on which previous work mainly concentrates [10, 14], become

M(β = 2) = 1.22 and N(β = 2) = −0.10. (36)

In the other limitβ → +∞, we give

lim
β→+∞

M(β) = ν = 4/3 (37)

and

lim
β→+∞

N(β) = (d − 1)ν − ζ(2) = 0.01. (38)

In deriving the above results, we have usedν = 4
3 for d = 2.

Perhaps the most important properties are the monotonicity

dM(β)

dβ
= ln(5/4)− ln[1 + 2−(β+2)] − β ln 2/(1 + 2(β+2))

β2 ln 2
. (39)

Note that the denominator is positive and the numeratorf (β) ≡ ln(5/4)− ln[1 + 2−(β+2)] −
β ln 2/(1 + 2(β+2)) in equation (39) is always larger than zero forβ > 0 because (i)f (β →
0+)→ 0+; (ii) f (β → +∞) = ln(5/4) and (iii) df (β)/dβ = 2(β+2)β(ln 2)2/[1+2(β+2)]2 > 0.
We then have

dM(β)

dβ
> 0 (40)

and
dN(β)

dβ
= dM(β)

dβ
> 0 (41)

for arbitraryβ > 0.
Equations (34), (37) and (40) mean thatM(β) > 0 for all β > 0, thus ford = 2,

| EEL–NL| ∼ (fc − f )M(β) → 0 asf → f −c , that is to say, the crossover electric field will
vanish for definitefc−f . This corresponds to an enhancement in the nonlinear response near
the percolation threshold relative to a system consisting only of the nonlinear components, and
it implies that the region of linear response shrinks and a small electric field is enough to lead
to an appreciable nonlinear response near the percolation threshold.

Because dM(β)/dβ > 0,M(β) increases with increasingβ. This means that the crossover
field | EEL–NL| vanishes faster for largerβ, thus for larger nonlinearityβ, a somewhat smaller
electric field is needed to stimulate an appreciable nonlinear response, and the larger the region
of nonlinear response may be correspondingly. In contrast, in the system with smallβ such
asβ → 0+, | EEL–NL| ∼ (fc − f )1.13 takes the maximum for definitefc − f , thus it possesses
the largest linear region. This can be well understood because asβ → 0+, the nonlinear term
χ1v

β+1 of the nonlinear component becomesχ1v and the nonlinear normal conductor has a
lineari–v responsei = (g1 + χ1)v.

As to the critical exponentN(β), according to equation (41),N(β) increases with
increasingβ also. Combining equation (35), which givesN(β) < 0, with equation (38),
which givesN(β) > 0, we can predict thatN(β) may take negative, zero and positive values
with increasingβ, thus| EJL–NL| has

| EJL–NL| → +∞ N(β) < 0 β < βc

| EJL–NL| → constant N(β) = 0 β = βc
| EJL–NL| → 0 N(β) > 0 β > βc (42)

whereβc ≈ 28 is a critical value at which the exponentN(β) = 0.
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Figure 1. For a two-dimensional percolating S/N system, the critical exponentM(β) of the
crossover electric field| EEL–NL| as a function ofβ based on equation (31).

Numerical results for exponentsM(β) andN(β) in the two-dimensional case based on
equations (31) and (32) are shown in figures 1 and 2 respectively. We can clearly find our
analytical predictions, i.e.,M(β) > 0 andN(β) takes negative, zero and positive values with
increasingβ; M(β) andN(β) are monotonically increasing functions ofβ.

Thus ford = 2, the qualitative analysis and numerical results ofM(β) andN(β) show
the following. (i) For smallβ(β < βc), only | EEL–NL| can describe the crossover effect. It
is trivial to use| EJL–NL| to characterize the crossover behaviour, because| EJL–NL| diverges as
f → f −c and cannot be experimentally accessed. Such conclusions demonstrate that it is
more appropriate to consider| EEL–NL| than| EJL–NL| in the case ofβ = 2 < βc [14] (also see
equation (36)). (ii) For largeβ(β > βc), both| EEL–NL| and| EJL–NL| vanish asf → f −c , and
thus can be applied to describe crossover effects also. This is an interesting and a new result,
which has not been reported because previous work only studies the cubic nonlinear response.

Then, we investigate the case ofd = 3. Because of lack of the explicit expression for
ζ(β+2) in this case, we can only present some concrete numerical results such asM(β = 2) ≈
0.74 andN(β = 2) = −0.01;M(β = 4) ≈ 0.79 andN(4) ≈ 0.04;M(β → +∞) = 0.88,
N(β → +∞) ≈ 0.13 with the aim of numerical results ofζ(β + 2) [21]. According to the
above results, we predict that the critical behaviour of| EJL–NL| and | EEL–NL| in d = 3 may
take on similar behaviour as that ind = 2. However, the crossover field ind = 2 may vanish
faster than that ind = 3 asf → f −c because of its larger critical exponents, for example,
M(β = 2) = 1.22(2D) > 0.74(3D); M(β → ∞) = 1.33(2D) > 0.88(3D). Therefore the
influence of dimensionalityd is an important factor on crossover physical parameters also.
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Figure 2. For a two-dimensional percolating S/N system, the critical exponentN(β) of the
crossover current density| EJL–NL| as a function ofβ based on equation (32).

As mentioned above, EMA can describe qualitatively the vanish of the crossover behaviour
but gives incorrect exponents. For example, the EMA predicts thatM(β) andN(β) are
independent ofβ, while equations (40) and (41) give thatM(β) andN(β) are monotonically
increasing functions ofβ. The EMA predicts the divergence of crossover current density for
all β, but equations (41) and (42) give that for largeβ | EJL–NL| can also vanish asf → f −c .
However, both EMA and equations (34)–(39) can predict the vanishing of the crossover field
| EEL–NL| and the divergence of| EJL–NL| for β < βc. So still EMA can be used as a first step
to estimate critical exponents and to depict crossover properties of| EEL–NL| and| EJL–NL| near
fc.

2.4. Comparison with the bounds

Based on the so-called ‘nodes–links–blobs’ picture, Hui [13] gives the upper bounds for the
crossover exponent of| EJL–NL|. In this picture of the percolating cluster just belowfc, the
conductance of the network is still finite, but typical size clusters of superconductors (TSCSs)
exist. The TSCSs can be approximately denoted by an array of nodes separated by the
correlation lengthξ , each node is regarded as the centre of the superconducting cluster of
linear size of orderξ and neighbouring clusters are linked by a thin layer of nonlinear normal
conductors. In some places, there is only one normal bond separating the superconducting
clusters. These bonds are called ‘singly disconnected bonds’ (SDBs); the number of SDBs
diverges asNc ∼ (fc − f )−1 asf → f −c .
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As the voltageV0 is applied to the network with volume� = Ld , the voltage applied to
the layer of normal bonds should bẽV = (ξ/L)V0 and the current in each SDB is given by
Ĩ = [I/(L/ξ)d−1]Nc, if we neglect the effects of multiply connected regions.Ĩ andṼ must
follow equation (1) [24], i.e.,

Ĩ = σ1Ṽ + χ1Ṽ
β+1. (43)

By simple deduction, we can obtain

ξd−1

Nc
| EJ | = σ1ξ | EE| + χ1(ξ | EE|)β+1. (44)

Letting the magnitude of the linear part be equal to the nonlinear part, we have the crossover
electric field

| EEL–NL| =
(
σ1

χ1

)1
β

ξ−1 ∼ (fc − f )M(β) (45)

and the corresponding crossover current density

| EJL–NL| ∼ Nc

ξd−1
∼ (fc − f )N(β) (46)

with crossover exponentsM(β) andN(β) given by

M(β) = ν and N(β) = ν(d − 1)− 1. (47)

It is known that the standard values of the correlation length exponentν are 4/3 for d = 2 and
0.88 ford = 3. Thus, the upper bounds given by the NLB picture for the crossover exponents
areN(β) ' 1

3 for d = 2 andN(β) ' 0.76 for d = 3, which are independent of nonlinear
exponentβ;M(β) ' 4

3 (2D) and'0.88 (3D) for arbitraryβ. The merit of the NLB picture lies
in its simplicity and the bounds can be used as a limit to check the validity of the theoretical
predictions. Comparing with them, it is not difficult to find that our results are always below
the upper bounds. However, the bounds cannot describe how the effect of nonlinearityβ acts
on these crossover physical parameters. We think the upper bounds are applicable strictly for
β → +∞.

The upper and lower bounds forM(β = 2) have been reported also [14], such as
1.18 6 M(2) 6 1.33 (2D) and 0.66 6 M(2) 6 0.88 (3D). By means of the multifractal
approach, we giveM(2) ≈ 1.22 (2D) andM(2) ≈ 0.75, which is in good agreement with
these bounds also.

3. Conclusions

In this work, we have studied the critical behaviour of the crossover electric field and current
density in a percolating S/N random network by means of (i) EMA and (ii) the multifractal
approach. The results are important and necessary for the investigation of the effective
nonlinear response with arbitrary nonlinear exponentβ. Below the percolation threshold
of the superconductor, we have shown that the magnitudes of the crossover field| EEL–NL| and
current density| EJL–NL| behave as| EEL–NL| ∼ (fc − f )M(β) and | EJL–NL| ∼ (fc − f )N(β).
The EMA givesM(β) = 1

2 and N(β) = 1
2 for all nonlinearity β and dimensiond.

By means of the multifractal approach, we giveM(β) = ν + [ζ(β + 2) − ζ(2)]/β and
N(β) = (d − 1)ν + [ζ(β + 2) − (β + 1)ζ(2)]/β. Both approximations predictM(β) > 0,
which means that we can introduce| EEL–NL| to mark the transition where the effective linear and
nonlinear response become equal in magnitude. This corresponds to the nonlinear response of
the composite becoming more pronounced as the threshold is approached, and a small electric



Crossover in percolating S–N network 8737

field is enough to lead to a considerable nonlinear response. At the same time, the second
approximation predicts the monotonic increase ofM(β), thus for largeβ we may predict that
a fairly small field is needed to stimulate an appreciable nonlinear response.| EJL–NL| takes
such complex and interesting behaviour as to diverge, keep invariance or vanish with increasing
β asf → f −c . This implies that forβ > βc we may also introduce the current| EJL–NL| to
characterize the crossover behaviour, which was neglected in the percolating S/N system in
the case ofβ = 2. Results are compared with those shown by the NLB picture and good
agreement is found.

Although our discussions are only limited to a nonlinearEJ– EE relation, they can be readily
generalized to systems on the effective mechanical properties in random mixtures. In the
elastic percolation problem a ‘superconductor’ corresponds to a hard material and the nonlinear
material corresponds to a medium with a stress–strain relation exhibiting nonlinear response
for large strain. There is a linear response regime at small strain and a nonlinear regime at
large strain [25]. Asfc is approached from below, the linear response regime corresponding
to some measurable physical quantities such as bulk and shear modulus shrinks.

Our attention mainly concentrates on the crossover behaviour in a two-dimensional
percolating S/N system. It would be worthwhile to study the crossover effects above two
dimensions in which explicit expressionsζ(β + 2) have not yet been found. For a realistic
system, the ratio of poor conductance to good conductance (h ≡ g1/g2) [9, 26, 27] may not be
zero; we can take one step forward to discuss the crossover effect and scaling behaviour in such
a system. It is interesting to perform numerical simulation on different nonlinear exponents
β to study the crossover behaviour and verify the theoretical predictions shown here. Finally,
we also hope that the present work will stimulate further experiments to observe the behaviour
we have predicted.
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